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This is an experimental and theoretical study of the slow translation of a hot sphere 
through a fluid at rest at infinity. The viscosity depends strongly on temperature, 
i.e., if AT = To-Tw is the applied temperature difference and y = I (d/dTo) lnk(To) I, 
then the parameter 0 = y AT is large : it is about 6.5 in the experiments and is taken 
as infinite in the theory. The flow is determined by two large parameters, namely the 
Nusselt number N and the modified viscosity ratio 6-l  = vw/(v0O3).  The qualitative 
state of the flow is observed to depend on the relation between N and E. If E - ~ +  00 

(N fixed, possibly large) previous analysis (Morris 1982) shows that all the shear occurs 
in a thin low-viscosity film coating the sphere; this film and the associated thermal 
layer separate at the equator, and a separation bubble of low-viscosity fluid trails 
the sphere. (ii) If N + ~ o  (8-l large but fixed) even the most viscous fluid deforms, 
and both the drag and heat losses are found to be controlled by this highly viscous 
flow. The present work maps the major asymptotic states which separate these two 
end-states for small E. The drag and heat-transfer laws are determined experimentally 
and theoretically: in addition i t  is shown that separation of the thermal layer ceases 
when the drag is controlled by the most viscous fluid, even though the heat transfer 
in this case can be still controlled by the dynamics of the least-viscous fluid. The 
heat-transfer and drag laws are also given for a sphere moving in a spherical container 
of finite radius. This model is shown to give a close estimate of wall effects for a sphere 
moving in a cylindrical container. For state (i) the theory predicts the heat transfer 
to within 20 % and, for the smallest E, the drag to within 30 yo. In the experiments 
E is small enough for all limiting states to be evident but, apart from state (i), a design 
flaw prevents a quantitative test of the theory. For the other states, the theory is 
compared with numerical results from Daly & Raefsky (1985). Although the values 
of E in the calculations are not small enough for the limiting states to be achieved, 
the theory predicts the drag to within 8% and the heat transfer to within 10%. 

1. Introduction 
Many creeping flows are greatly influenced by viscosity variations. In  compression 

moulding a polymer charge is squeezed between two parallel disks. The charge is 
initially cold and is heated by maintaining the two plane faces of the mould at a fixed 
temperature. This lowers the viscosity near the faces of the mould relative to that 
in the centre of the charge, and it is observed that in some cases all the shear occurs 
in the softest fluid, but in others the shear is evenly distributed across the sample 
(see e.g. Lee et al. 1982). If the polymer contains fibres, the differing flow patterns 
can result in very different mechanical properties in the moulding. 
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Very similar behaviour occurs in slow flow past a hot sphere (Morris 1982). Fluid 
ahead of the sphere must deform to pass it. As in compression moulding a continuum 
of flows is possible: at  one extreme all the shear occurs in a thin low-viscosity film 
coating the forward hemisphere ; at the other extreme the isoviscous surroundings 
of the sphere are deformed over distances comparable to the diameter. Both the heat 
transfer and drag depend strongly on which type of flow occurs. 

Morris (1982) gives the theory covering both the squeezing flow and the flow past 
a sphere. The theory is stated for the case v(T) = A e-yT and assumes that the 
Reynolds number is zero and that 0 = y AT+ co , where AT is the applied temperature 
difference. The theory for the squeezing flow covers the entire range of behaviour, 
but that for the sphere assumes that the only shear occurs in the low-viscosity film. 

The present work extends the theory for the sphere to cover the remaining limiting 
states, and then tests the theory experimentally. The experiments provide a 
quantitative test of the theory for the case in which the only shear occurs in the 
low-viscosity film but, because of the experimental design, the experiments only 
demonstrate qualitatively the other limiting states, and the transition to them. The 
theory for these other limiting states is tested against finite-element calculations by 
Daly & Raefsky (1985). The main quantitative conclusion from the experiments is 
that, although the theory assumes B-+oo, it  predicts the experimental results (for 
which 0 N 6.5) for the heat transfer to within 20 % and for the drag to within 30 %. 

The experiments were planned and carried out before the present extension of the 
theory. In  particular when the experiments were designed there was no quantitative 
theory for the motion of a sphere in the presence of rigid walls, and so the experiment 
was designed to be quantitative only for the case in which the shear is confined ta 
the low-viscosity layer. In that case the flow is not affected by the presence of the 
rigid boundaries containing the fluid sample. The resulting data for heat transfer 
appear to show a systematic offset when deformation of the isoviscous fluid becomes 
important. This qualitative observation suggested the following rigorous theory 
which, had it been available when the design was made, would have motivated 
experiments which gave a quantitative test of the theory even when the isoviscous 
fluid deforms. 

2. Summary of the theory 
In this work the sphere is rigid and translates with velocity U through fluid at  rest 

at a. The boundary-value problem is 

a 
axj 

0 = -aij with aij = -pSij+2p(T)etj, 

aT 
u.- = K V2T, W*u = 0. 

3 axj 
The boundary conditions are 

u =  U, T =  To o n r = a ;  u+O, T+T,  = To-AT asr+co. ( l c )  

Let D’ be the dimensional drag on the sphere; let P = Ua/K and let 

Q 
2nak AT’ 

N =  
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Here k is the thermal conductivity of the fluid, a is the radius of the sphere and Q 
is the total heat flow out of it. 

The first difficulty in describing these flows experimentally is the choice of 
independent variables. Although dimensional reasoning is not particularly helpful, 
asymptotic analysis makes the choice clear. 

It shows that, if 8 = y A T + m ,  the drag and heat-transfer laws take the form 

p = f ( d ,  e), N = h(D, E ) ,  
where 

The choice of D rather than ED = D’/izpal K as the first variable is a matter of 
convenience. Development of the theory was originally motivated by geological 
applications in which all the shear occurs in the low-viscosity layer (e.g. Morris 1982). 
In that case the fluid of viscosity ,urn does not deform and the drag law does not 
involve pal : both P and N are then independent of 6 if D is chosen rather than eD. 
This is particularly useful to note in the experiments. To give a clear demonstration 
of the limiting states discussed in the introduction, a very large viscosity ratio is 
needed. In  the experiments this is obtained by keeping the ambient fluid at 0 “C and 
at this temperature ,urn is of order lo8 poise. Viscosities this large are difficult to 
measure accurately, and the set {D, e} has the advantage that it is easy to fix E by 
fixing To and T, even if it  is difficult to measure it precisely: this allows us to map 
P as a function of D with E fixed and thus to demonstrate the existence of the two 
flow states. 

The choice of the modified viscosity ratio E = 88uo/ual is important. Although the 
theory is stated initially for the viscosity profile u = A e-YF, Morris (1982, (3.26)) 
shows that it can be applied to more realistic profiles (such as u = A exp c/T) provided 
they can be approximated by the form v = A e-yT for temperatures close to To. This 
is done by taking 

d 
y = -In u(To). 

dT0 
(4) 

It is therefore significant that, according to (3a), N and P depend only on D and E :  

this means that all viscosity profiles with the same values of 8, po and E result in the 
same drag and heat transfer, i.e. the drag and heat transfer are independent of the 
details of the viscosity profile. Asymptotic analysis shows that this is the case because 
the fluid deforms appreciably in only two regions : coating the sphere there is a layer 
of characteristic thickness 8/8 in which the viscosity is of order po; and outside the 
thermal boundary layer the fluid has uniform viscosity pal. The rapid increase in 
viscosity away from the hot surface is significant in defining the low-viscosity film, 
but the detailed variations in p outside this film are shown to play no role whatever. 
All viscosity profiles with the same 8, po and E thus result in the same drag and heat 
transfer. 

Theoretical predictions for 8 + CO 

Morris (1982) shows that for the squeezing flow a single solution is possible which, 
for sufficiently small e, shows the distinct asymptotic states described in the 
introduction, In  contrast, for the sphere i t  is not possible to make a single analytic 
solution covering the continuum of flows, but a separate analytic solution is possible 
for each of the states. Table 1 summarizes the resulting heat-transfer and drag laws. 
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Drag D’ N D )  N(P)  
O , < D 4 1  inpa UaOs 2 2 

1 + D + e-t &npa ( u ~ u * / K ~ ) o *  ot :p 
conduction limit 

lubrication limit 

intermediate limit 

Stokes limit 

e-4 + D e-2 tnpm aUK(A) 1.54203 1.834 (Pie)! Kf(h) 

c2 4 D + t4eP3 Qnpm aUK(h) 0.650(eD/ K(A))k 0.922fi 

TABLE 1 .  Asymptotic forms for a solid sphere. K(h)  is the correction factor for wall effects, and 
is given by (6); h = a / R  is the ratio of sphere radius to container radius. For an infinite fluid 
(h+O) K ( h ) + l .  N = &/2xkahT. 

The entries in the first two rows follow from the theory in Morris (1982, $4). The 
relation between N and P in the fourth row is simply that for isoviscous flow past 
a traction-free sphere : that relation (with a slightly different definition of N )  is given 
by Levich (1962, p. 404). The drag law in the fourth row, together with all the entries 
in row 3, are given by a new analysis in $3. Note that, since the experiments are carried 
out in a finite container, a correction for wall effects is necessary when deformation 
in the exterior isoviscous fluid is important. 

There are three main points of interest in the table. First, for D 4 E-6, the theory 
predicts the drag to be proportional to po and independent of ,urn. Secondly, for 
D % s-6 it shows that D’ K y,  U :  the drag depends linearly on U and is independent 
of p0. Thirdly, over a wide range of D, N cc a: however comparison of rows 2 and 
3 shows that the constant of proportionality increases by about 50 yo when the stiff 
fluid deforms appreciably. Morris (1982) found no equivalent offset for the squeezing 
flow. This is because of an essential geometric difference between the two flows: in 
the squeezing flow the thermal layer never separates but it does in the flow past a 
sphere. If the pressure drop across the sphere is too small to make the stiffest fluid 
deform, as in (a)  on figure 1 ,  the thermal layer separates a t  the equator of the sphere : 
this is shown by Morris (1982, $4). In contrast, the extended theory shows that, if 
the pressure drop is large enough to deform the stiff fluid, the thermal layer only 
separates a t  the rear stagnation point, as shown at ( b )  in figure I .  The motion of the 
separation point towards the back of the sphere increases the effective area across 
which heat is lost. Thus when the pressure field (and hence the drag) is controlled 
by the exterior flow, the heat transfer is also increased. We shall see that, although 
the slope of the ( N ,  D)-curve does not change at this transition, the increase in 
effective area causes an offset in the curve. 

3. Flow past a hot sphere for s-f << D 4 s--2 

This section gives a self-consistent theory for this asymptotic state for a sphere 
of radius a in a spherical container of radius R. The inner sphere is in pure translation 
and at  the instant of observation is concentric with the outer sphere. This formulation 
is useful because (as we shall see) it allows direct comparison with numerical studies 
by Daly & Raefsky (1985). The gap width R-a  is assumed large compared to the 
thermal boundary-layer thickness 8. 

In addition to the general assumption 6’+ 00, four assumptions are made here which 
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FIGURE 1.  Sketch showing (a) the isotherms separating at the equator when the pressure drop across 
the sphere is too small to deform the external isoviscous fluid (lubrication limit, D < E - 4 )  and ( b )  
the isotherms separating only at the trailing stagnation point when the pressure drop is large enough 
to deform the exterior fluid ( E - 8  < D) .  

are specific to the asymptotic state being investigated. These are: (i) the soft layer 
carries a negligible fraction of the total volume flux past the sphere (so that the 
exterior flow sees the surface r = a as impermeable); (ii) the exterior flow sees the 
surface r = a as traction-free ; (iii) the soft layer carries essentially all the volume flux 
along the thermal layer; and (iv) the thermal layer separates only at the rear 
stagnation point. Note that assumptions (i) and (iii) can be compatible for this state 
because 8 4  a .  Note also that from assumption (ii) the exterior isoviscous 
flow is completely independent of the boundary condition actually applied to the 
tangential velocity at r = a : that boundary condition only affects the flow in the soft 
layer. The results of the analysis will be shown to be consistent with these assumptions 
if s-4 4 D 4 c - ~ .  The first three assumptions can be motivated using the scaling 
analysis in Morris (1982). 

3.1. Asymptotic analysis 
3.1.1 . The isoviscous exterior 

From assumptions (i), (ii) and (iv) above it follows that the isoviscous flow is simply 
that due to the translation of an impermeable, traction-free sphere within a spherical 
container. Happel & Brenner (1965, pp. 120, 131) give the solution. In particular the 

(5) 

pressure on r = a is 
U 

p = PI’, K ( h )  cos a, 
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where (r,  a, 4) are the usual spherical polar coordinates (figure l),  A = a/R and 

1 +5A3+%h5 
K(A) = 

1 -;A + ;P - 
(The wall correction K(A) in (6) is not the wall correction denoted by the same symbol 
in Happel & Brenner.) We now show that, because the soft layer is thin, the 
tangential pressure gradient does not change across it. This externally imposed 
pressure gradient drives a flow in the soft layer and, since the tangential velocity 
increases with a, the layer entrains fluid. This entrainment velocity maintains the 
thermal layer, and hence controls the heat loss. 

3.1.2. The soft layer 
Let (ur, u,, u ~ )  = (w, u, 0). Let a circumflex denote dimensionless quantities that 

are 0(1) within the soft layer, and let a tilde denote those that are O( 1) over distances 
of the order of the characteristic thermal-layer thickness So. The following choice of 
scales can be motivated by scaling (Morris 1982, (2.5)). Here it suffices to note that 
these scales result in governing equations all with coefficients O( 1)  in the asymptotic 
regime of interest. Let 

(7 a)  
a "  u = -wou, r = a+Sor" = a+l0B, w = w o 8 ;  
10 

Further, let 

where 

T - T , -  1 U 
v = v o v ,  ---!P=l--P, p=pvm--@. 

AT e 
e3v0 U K 

v ,  WO' 
c=- , w o = 7 ,  so=--. 

( 7 4  

From now on we delete the circumflexes from dimensionless quantities but shall 
retain the tildes. On letting Z,/a+O with P fixed the dimensionless governing 
equations become 

aw 1 a -+- - (u sina) = 0, ( 8 4  ar sina aa 

The dimensionless equations (8 )  are exactly those governing the flow in the 
lubrication limit 1 < D 4 S-4 (Morris 1982, $4). However the scale for the pressure 
(7b) is different because the driving pressure here is known from (5) ; in dimensionless 
variables, it  is 

In  contrast with the flow in the lubrication limit, here the normal component of 
velocity is not known at the outer edge of the soft layer, but is to be determined as 
part of the analysis. The boundary conditions are 

p = K(h)  cosa. (9) 

O = T = u = w  o n r = O ;  u+O asr-tco, (10) 

together with a matching condition on T as r + cx3 . 
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The expressions 

exactly satisfy the equation of continuity (8a).  From the energy equation (8e)  it 
follows that 

where the arbitrary function Z(a) is fixed by matching (12) to the solution of the 
external-energy equation. From (12) v = er/t(a). Let 6 = r/Z(a). The momentum 
equation (8c)  then admits a similarity solution of the form 

T = r/Z(a), (12) 

$ = K(h) Z3(a) sin2a f(6). (13) 

Substitution in (8 c )  shows that the solution f(6) satisfying the boundary conditions 
(10) is 

f(6) = 1 - (1 + 6) e-3, f’(6) = 6 e-5. (14) 

Let ,u = cosa. Then from (11)  and (13) it follows that the entrainment velocity 
w(p)  3 w( 00, a) is given by 

d 
w@)  = K(h) -( 1 -p2) Z3(p). 

d,u 

Another equation connecting w(p)  and Z(p) follows on solving the external-energy 
eauation 

The solution which matches the solution of the energy equation in the soft layer is 

F = exp ~“w(,u). 

The arbitrary function I@) in (12) can now be determined by matching. Carrying this 
out in the usual way, we find 

W ( P )  4,u) = - 1. (17) 

Combining (17) with (15) results in the final expression for I @ ) :  

This is to be integrated subject to the condition that Z(p) remains finite at the forward 
stagnation point (p+ 1) .  Let h = KiZ(1 -p2)i .  Then the solution of (18) is given by 

In particular, 
h4( - 1 )  = 2.2435. 

Figure 2 shows Z@) for K(h)  = 1.  It is important to note that Z(p) remains finite all 
the way to the back of the sphere. This is essentially different from the behaviour 
in the lubrication limit : there the pressure drop is too weak to deform the isoviscous 
fluid and the thermal layer separates at the equator. In the lubrication limit 
essentially all the heat loss occurs from the forward hemisphere; in the present 
(intermediate) limit, heat is lost from the entire sphere. 
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From conservation of energy it follows that the dimensional, 
flow out of that part of the sphere between p = 1 and p = po is 

I 1 I 1 I I I I I 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 

thermometric heat 

where So is the conical surface ,u = pot r 2 a. By assumption (iii), on 8, uoA = 0 unless 
T lies between To and To - O(8-') so that T can be replaced by To in the integral. Since 
u*A = u, it follows that the dimensionless heat flow is 

To obtain the last equality we have used (13) and the scales (7c). 
The total dimensionless heat flow is 

N = 1.833 @ ( A )  zy, 
if 19(b)  is used. Approximately two-thirds of this heat loss is contributed by the 
forward hemisphere. Since K(h) 2 1, the heat transfer is increased by the wall 
correction. This is the case because a greater pressure drop is needed to force fluid 
past the sphere when a rigid boundary is present at r = R. The increased pressure 
gradient induces a stronger flow into the soft layer, and this in turn thins the thermal 
layer and increases the heat flow. 

It can now be shown that the normal viscous stresses contribute a drag of order 
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(Zo/a)2 compared with that due to the pressure. Thus the dimensional drag D' is found 
by integration of p over the surface of the sphere. This gives 

D' = $cp, aU K(A). 

In dimensionless form this is P = eD/SK so that 

N = 1.541Df. 

Note that the relationship between N and D is not affected by the presence of the 
wall at r = R. 

3.1.3. Self-consistency 

assumptions on which it is based. 

this, note that from (20) 

It remains to show that the results of the theory are consistent with the 

(i) The soft layer carries a negligible fraction of the total volume flux. To show 

$ ( r =  c o , - l )  1 1 
Ua2 z'62v3xa. 

Hence 
$(r = 00, - 1 )  

Uae 
4 1 i fD 9 E-3. 

(ii) The exterior flow sees the surface of the sphere as traction-free. To show this 
note that in the soft layer the shear stress is of order ,uo uo/lo whereas outside it is 
of order pa, U/a.  From (7), the ratio of these two shear stresses is of order lo/a+O, 
which is the required result. 

(iii) The soft layer carries essentially all the volume flux along the thermal layer, 
and the suction velocity at the outer edge of the soft layer maintains the thermal 
layer. To show this note that the radial velocity changes between the outer edge of 
the soft layer and the outer edge of the thermal layer owing to deformation in the 
external flow. This change is of order (s /a)  U, and the ratio of the two contributions 
to the normal velocity at the outer edge of the thermal layer is of order 

where we have used N % a/& and the definition (7c) of wo. From (23), N z Df so that, 
from (25), awo/&, U Q 1 if D < B - ~ .  Hence the suction velocity maintains the thermal 
layer if D 4 e-e. Moreover, the ratio of the volume flux carried by the soft layer to 
that carried by the isoviscous flow is of order azwo/aso U .  From (26) this is large if 
D < c2. 

(iv) The thermal boundary layer separates only at the rear stagnation point. Here, 
self-consistency follows because Z(p) is finite except at the rear stagnation point 
(figure 2). 

Thus the analysis is self-consistent if E - !  Q D 4 E - ~ .  

3.2. Comparison with numerical work 
In all the laboratory and numerical studies of this flow, the drag on the sphere has 
been increased by the presence of walls containing the working fluid : this is the case 
even in the numerical work of Daly & Raefsky (1985) who modelled the laboratory 
set-up numerically. The present model assumes that the drag correction factor for 
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I I # I  I I 

1 10 102 103 
P 

FIQURE 3. Comparison of the asymptotic relations between N = &/2na~AT, P = Ua/K and 
e = Bsv,/v, with results calculated by Daly & Raefsky (1985). The predictions are based on (21) 
and include wall effects ( A  = 0.25). 0, E = 7.81 x lo-*: 0, E = 1.53 x lo-*. 

the hot sphere will not change appreciably if the rigid cylindrical container is replaced 
by a rigid sphere of the same radius. The point of the model is that, as we have seen, 
the second case is easily analysed exactly; whereas a treatment of the first is tedious 
at  best. 

To justify the assumption, note that for the corresponding isoviscous flow both 
problems have been solved. For each problem, Happel & Brenner (1965, pp. 133,320) 
give D/6xpaU as a function of h = a /R .  Comparison of their results shows that if 
A < 0.3 the two drag corrections agree to within 8 %. In the variable-viscosity flow 
the walls are felt only by the isoviscous exterior flow, and we therefore expect that 
if the correction factor for a cylindrical container is approximated by that for a 
spherical container, the error will also be less than 8 yo for h < 0.3. An error of this 
magnitude is acceptable in comparing the theory and calculations because, as we shall 
see, wall effects increase the drag by about 72 % in the calculations. 

Daly & Raefsky (1985) calculate the flow induced by the axial translation of a hot 
sphere in a cylinder containing a fluid for which u(T) = A e-yT. From their equation 
(34) it follows that D’/4xp, aU+0.62 in the intermediate limit E - !  6 D 4 E - ~ .  The 
limit 0.62 does not depend on whether the inner sphere is rigid or traction free (see 
their figure 15). This is consistent with our assumption (ii). Moreover, for their 
calculations h = 0.25 and (22) above predicts D’/4xp, aU+0.574. The calculated 
value is 1.08 times the predicted value. The discrepancy is due to the model used above 
to calculate K(h) .  

We shall see 
later that this is not small enough for the lubrication limit to be apparent in the drag 
data, and there is little point in comparing theory with calculations for this limit. 

Figure 3 shows the asymptotic relations between N and P, including wall effects. 
The data are from Daly & Raefsky. In the calculations E 2 0.015 and is never small 
enough for the lubrication limit to be clearly established: however, for the two 
smallest E ,  the intermediate limit predicts the heat transfer for P = 100 (roughly 
midway between the two knees) to within 10 yo. In contrast, in our experiments B was 
small enough for the intermediate limit to be apparent: the data show that N cc 8, 
but are not accurate enough to establish the constant of proportionality. 

Comparison of the theory with the numerical results shows that the theory is 
predictive in the intermediate limit, but the numerical results are for sufficiently large 

In the calculations of Daly & Raefsky, the smallest E = 1.53 x 
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FIGURE 4. The apparatus. The central stainless-steel tank contains the working fluid and is 30 cm 
high and 20 om in diameter. The upper surface of the working fluid is free, as discussed in the text. 
An ice-water bath surrounds the tank and keeps the working fluid at a measured temperature close 
to 0 "C; this temperature is measured 3 cm off-axis and 7 cm below the fluid surface. The copper 
ball is forced through the fluid by a weighted plunger passing through a Teflon bearing 5 cm long. 

E that the lubrication limit is not clearly visible. In  contrast we shall now see that 
it is relatively easy to test the theory against laboratory experiments in the 
lubrication limit. 

4. Experimental apparatus and procedure 
4.1. Design constraints 

The apparatus was designed to allow a quantitative test of the theory in the 
lubrication limit together with a qualitative demonstration of the transition to the 
Stokes limit. Comparison of figures 6 and 7 in Morris (1982) shows that both the 
( N ,  D)- and (P ,  D)-curves will lie on the lubrication asymptote for about 2 orders of 
magnitude in D if E < 2 x low3. If we assume 8 = 5 to be the smallest 8 for which 
the asymptotic theory applies, E = 2 x corresponds to a viscosity ratio u,/uo of 
order lo5. To show the transition to the Stokes limit in the drag law for this E the 
apparatus must be capable of providing a dimensionless buoyancy D of up to lo4. 

4.2. Apparatus 
The design closely follows that of Ribe (1983) and is shown in figures 4 and 5. There 
is an air space above the entire free surface of the working fluid. This was originally 
included because two different sizes of ball were used, and different volumes of fluid 
were displaced. It has the disadvantage that in the Stokes limit the ball drags down 
the free surface of the fluid so that the rod and part of the trailing hemisphere are 
exposed to air. Because of this both the measured heat loss and drag are about half 
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FIGURE 5. The copper sphere. Two different spheres were used: the smaller ia 2 cm in diameter with 
a driving rod 0.4 cm in outside diameter; for the larger the corresponding figures are 4 om and 1 cm. 
Each sphere carried 4 thermocouples : the two shown in the figure read the temperature of the copper 
0.1 cm below the ball's surface; a third thermocouple is glued to the back surface of the ball and 
the fourth, to the outside of the rod 2.5 cm behind the sphere. All four readings agree to within 
0.5 "C if the leads from the forward thermocouple are insulated from the heater. 

the predicted values in the Stokes limit. This does not happen in the lubrication limit. 
Of course the difficulty could have been avoided by filling the tank flush with its top, 
and leaving an air space only below the Teflon bearing. 

When the apparatus was designed, this did not seem a serious failing, At that stage 
the behaviour of the separation bubble was unknown and the simple theory for wall 
effects given in $3 was not possible. This flaw in the design means that the 
experiments provide only a qualitative test of the theory in the Stokes limit. 

4.3. Working jluid 
This is a viscous corn syrup supplied by CPC International who specify it by a Baume 
number (45) and a D.E. number (33.5). Table 2 gives its material properties other 
than the viscosity: these properties were supplied by the manufacturer. The 
properties at T = 49 "C were used to reduce the data. 

Figure 6 shows the viscosity as a function of temperature : the three isolated points 
are measurements taken by Saybolt & Company on a sample we provided; the 
remaining data were obtained by us using a falling-ball viscometer. The sample 
analysed by Saybalt & Company contained no air bubbles, but that analysed by us 
had been used in the experiment and (even after heating) contained many very fine 
air bubbles. The agreement of the two sets of data for high temperatures suggests 
that these very small bubbles do not increase p substantially. 
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T "C C ,  (J/g "C) k (W/cm "C) 
27 2.21 0.00346 
49 2.27 0.00363 
71 2.34 0.00377 

Density p = 1.44 g/cm3 
Thermal diffusivity K = 0.001 1 cm*/s 

TABLE 2. Thermal and physical properties of the corn syrup used in the experiment 
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FIGURE 6. Viscosity of the working fluid (poise) as a function of temperature ("C). 

4.4. Experimental procedure 
Each run began by allowing the syrup to come to thermal equilibrium with the 
ice-water bath. The sphere was suspended just above the fluid and its temperature 
raised to a given temperature To. A specified weight was added to the platform shown 
in figure 4, and the ball allowed to sink through the fluid. The temperature To was 
kept constant manually. When the ball was 5-8 ern into the fluid, we recorded the 
depth of penetration (at 1 cm intervals), the time, To, the power supplied to the heater 
and the load D'. The Nusselt number N is defined by (2) and dimensionless load D, 

There were 63 runs: E was fixed for groups of 10-20 runs and D was varied (by 
changing the load) to map the drag and heat-transfer curves. The load varied from 

by ( 3 b ) .  
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FIGURE I. Experimental results for P = Ua/K aa a function of D = D'/@p0 ~8~ and E = 8 3 ~ o / v m .  D' 
is the dimensional drag. Each broken line is the predicted aaymptote for the €-value of the right-most 
point on the corresponding empirical curve : wall corrections are included ( A  = 0.2). The solid curves 
were fitted by eye to the data before the broken lines were drawn. Open (solid) symbols show data 
collected for the small (large) sphere. x ,2.1 x 10-1 > 2 e 2 3.3 x lop2; > 1.1 x 1O-I;  + ,3.5 x 
A, i . 5~10-2>E>8 . ix10 -3 ;  0 , 5 . 3 ~ 1 0 - 3 ~ ~ ~ 3 . 4 ~ 1 0 3 ; ~ 8 ~  0 , 2 . 6 ~ 1 0 - 3 ~ ~ ~ i . ~ ~ 1 0 - 3 ;  
0,5.3 x 10-4 2 4.7 x 10-4. 

50 gm to 4 kg on the small ball, and 0.6 kg to 33 kg for the large ball. For almost 
all runs T, lay between 0 and 1 "C, and To varied by about 1 "C in a given group. 
Almost all the runs were taken with To = 43,49, 55 or 66 "C. The smaller ball used 
between 1 and 15 W, which was supplied by a standard d.c. supply; for the larger 
ball the range was 15-80 W and ax. was used. 

5. Experimental results 
The Appendix gives P and N as functions of D and E for all runs. 

5.1. The drag law 

The drag data are shown in figure 7 .  The experimental curves show the three 
important qualitative features predicted by the analysis and discussed in $2.1. First, 
all the curves collapse to a single curve to the left of the figure : thus for sufficiently 
small D the drag law becomes independent of the background viscosity ,urn and the 
only deformation occurs in the soft layer. Secondly, for given E the slope of the 
experimental curve appears to approach one for large enough D :  in each case the 
tangent to the right end of the experimental curve has a slope of approximately 0.80 
so that for large enough D the drag law appears to become linear in U .  Thirdly, 
for given D ,  the slope of the drag curve decreases smoothly as E +  0 : for the smallest 
E = 0.00057, the slope of the curve for 4.4 x lo2 < D < 5.0 x lo3 is approximately 
0.31. According to the theory P oc a in this lubrication limit. 

In addition, for the curve with the smallest E = 0.00057 the drag law for the 
lubrication limit predicts the observation to within 30 yo for 480 < D < 3.5 x lo4, i.e. 
for almost two decades in D. 
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FIGURE 8. Experimental results for N = &/2nak AT as a function of P = Ua/K. The broken lines 
are the predicted asymptotes: their analytic forms are given in table 1 ( A  = 0.2). The solid curves 
were fitted by eye to the data before the asymptotes were drawn. See figure 7 for symbols. 

Even without wall corrections, the predicted drag in the Stokes limit is 1.2-1.6 
times the observed drag. Since the discrepancy is systematic, it appears that it is due 
to the sphere pulling the free surface down, so that the fluid does not completely cover 
the back hemisphere. We shall see that the data for heat loss supports this idea. 

5.2. Heat losses 
In figure 8 the experimental points are shown by plotting N against P. The theory 
predicts that for large P, N cc Pi:  the transition to this a-power law is obvious in the 
data, but the predicted constant of proportionality is 1.4-2 times the observed 
constant. Earlier we noted that, in the intermediate limit, the sphere was observed 
to pull the free surface of the fluid down, so that the back hemisphere was not covered 
by the fluid in this limit. The reduction in heat loss is a consequence of this; figure 7 
shows that the drag is affected in the same way. 

Since the displacement of the free surface makes it easier to deform the stiffest fluid, 
the drag is reduced in the intermediate limit, and the transition from the lubrication 
to the intermediate limits occurs for smaller P than was predicted. Thus the range 
of P for which a given curve in figure 8 follows the lubrication curve is reduced. 
Despite this, the predictions and observations agree to within 20 % in the lubrication 
limit and, in addition, for the smallest E the observed curve has a slope of 
approximately 0.67 for 7 < P < 20: the theory predicts N a P. 

Figure 9 shows N as a function of D. We consider the results for the small and the 
large sphere separately. For the small sphere (open symbols) all data for the 
lubrication limit lie within 20 yo of the theoretical prediction : however these data 
continue to lie on the lubrication asymptote even when the theory predicts that the 
flow should have entered the intermediate limit. This effect is particularly evident 
when N is plotted against P (figure 8). In  that figure these points (open symbols, 
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FIGURE 9. Experimental results for Nusselt number N = &/2rcakAT as a function of 
D = D'/#n,u,, ~ 8 ~ .  The lines with slope 4 are the predicted asymptotes: their analytic forms are given 
in table 1 .  See figure 7 for symbols. 

N 2 7) fall below the empirical curves. Since the empirical (N, P)-curves were 
determined in the intermediate limit by data taken from the large sphere (figure 8, 
solid symbols), it appears that there is some dependence on the radius of the sphere. 
There are two ways in which this could enter. First, conceivably the conduction 
resistance of the large sphere might be large enough that it becomes a poor 
approximation to assume a uniform surface temperature for the sphere. However 
measurements of the surface temperature show that it is uniform to within 0.5 OC: 
this is small compared with the applied temperature difference which was about 50 "C. 
Secondly, because the sphere advances in a finite container, there is a return flow. 
It seems plausible that this return flow will oppose the tendency of the sphere to drag 
the free surface down: since the return flow is weaker for the smaller sphere 
( A  = a/R = 0.1) than it is for the large ( A  = 0.2) it is possible that the back of the 
small sphere is more exposed to air than is the back of the large sphere. This would 
explain why the heat loss for the small sphere is reduced relative to that from the 
large sphere. A t  present, only the second of these explanations seems possible. We 
conclude that points marked by open symbols in figure 9, and with N 2 7, 
underestimate the heat loss from the sphere: the error is systematic and appears to 
be due to the deflection of the free surface. 

If N for the large sphere is correlated against D (figure 9, solid symbols), the data 
lie between the asymptotes for the lubrication and intermediate limits, and there is 
a systematic dependence on B :  those data with the smallest B lie closest to the 
prediction for the lubrication limit. The systematic dependence on E can be understood 
by referring to figures 7 and 8: in the intermediate limit both the drag and the heat 
transfer fall below the predictions, and this happens most strongly for the smallest 
values of E .  
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6. Conclusions 
The present data show all the qualitative features predicted by the theory. In 

addition, for the smallest value of 8 (0.00057) and for 0 N 6.5 the theory for the 
lubrication limit predicts the drag to within 30 yo and heat transfer to within 20 Yo. 
The experiments are not sufficiently accurate to test the theory in the intermediate 
limit, but comparison of the theory with numerical experiments by Daly & Raefsky 
(1985) shows that the theory predicts the heat transfer to within 10% in the 
intermediate limit, and the drag to within 8 %. Although the present results are 
marred by the deflection of the free surface, the essential point is that laboratory 
experiments are a cheap and effective method of testing asymptotic theories of this 
type : once the initial design problems have been solved, it is relatively easy to make 
0 large enough for the asymptotic analysis to apply, and B small enough that the 
asymptotic states described in the introduction are evident in the results. 

This work is supported by the National Science Foundation through grant 
MEA-8208657 (Morris). The experiments described in $94 and 5 were carried out by 
A. Ansari in partial fulfilment of the requirements for the M.Sc. degree in Mechanical 
Engineering. 

Appendix 1. Sorted results, rounded to 3 figures 

E 

1.27 x lo-' 
1.21 
1.14 
1.30 

1.53 x 
1.25 
1.24 
1.04 
1.14 
1.30 
1.09 

*1.05 

9.3 
58.6 
*8.9 
9.3 

*9.0 
*8.8 
*9.7 
k8.1 

4.8 
4.0 
5.3 

k4.5 
4.0 

8.7 x 10-3 

5.2 x 10-3 

P 

6.35 
6.75 
9.90 
7.8 

7.8 
13.7 
12.9 
12.6 
14.0 
14.4 
19.7 
53.0 

11.9 
14.2 
16.4 
26.5 
38.2 
59.7 
85.5 
99.0 

3.55 

4.80 
6.10 
8.4 

13.7 
19.3 
20.3 

Large ball. 

N D 

2.80 7.62 x 10' 
2.70 8.34 
3.6 8.44 
3.7 1.61 x lo2 

4.10 2.54 x loe 
5.8 6.38 
5.54 7.94 
6.0 7.99 
5.86 8.21 
5.76 9.13 
7.06 2.00x 108 

12.8 5.10 
3.02 5.56 x 10' 
5.6 6 . 3 7 ~  lo2 
6.72 9.47 
8.80 1.03 x lo3 
6.8 2.18 

11.6 3.91 
13.3 8.53 
14.6 1.28 x lo4 
16.0 1.69 

3.56 1.16 x lo2 
4.0 2.02 
4.74 3.62 
6.26 1.45 x los 

10.2 2.54 
7.68 3.45 

5 Cold rod. 
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Appendix 1 (continued) 

E 

*4.5 
*4.3 
*4.1 
3.4 x 10-8 
3.4 

*3.5 
*3.7 
*3.4 

2.3 x 
2.2 

*2.3 
2.5 

*2.6 
2.1 

*1.85 
1.5 
2 .o 

*1.57 
*1.82 
*1.03 
*1.46 
*2.0 
*1.75 

5.29 x lo-* 
6.03 
6.25 

*4.40 
*6.04 
*4.77 
*6.67 
*5.09 
*5.67 

*1.8 x 10-3 

2.11 x 10-1 
3.47 x 10-2 
3.30 

P 

51.6 
64.4 

14.3 
28.6 
28.0 
37.2 
88.1 

6.40 
7.9 

23.0 
32.7 

9.4 
12.2 
21.3 
29.0 
25.7 
26.4 
44.3 
38.7 
52.0 
69.0 

7.2 
9.10 
14.3 
15.3 
21.7 
30.2 
52.5 
83.0 

110 

128 

101 

147 

5.88 
11.9 
8.1 

N D 
14.5 1.29 x lo4 
16.2 1.84 
18.0 4.07 
6.48 1.63 x lo8 
8.0 4.50 

12.1 5.60 
12.7 8.67 
17.2 3.20 x lo4 

4.16 2.45 x loz 
4.72 4.35 

11.46 5.46 x los 

21.6 8.05 
10.0 1.18 x 1 0 4  

5.24 7.16 x loz 
8.48 1.60 x lo3 
8.22 4.84 
9.28 8.40 

11.9 8.50 x lo8 
12.7 8.98 
15.1 1.86 x lo4 
16.1 2.63 
16.3 2.71 
19.8 3.98 
20.6 6.89 

5.07 4.36 x lo2 
5.35 9.38 

10.1 5.01 

14.3 2.48 
18.9 6.08 

26.8 3.30 

7.57 2.97 x 103 

12.1 1.07 x 1 0 4  

22.0 1.49 x 105 

3.38 2.22 x 103 
2.20 2.68 x loz 

4.12 1.51 x lo* 
* Large ball. 
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